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QUASI-INVARIANCE OF THE YANG-MILLS
EQUATIONS UNDER CONFORMAL
TRANSFORMATIONS
AND CONFORMAL VECTOR FIELDS

THOMAS P. BRANSON

1. Introduction

It is well-known that the Yang-Mills equations on Minkowski space admit
as an invariance group the 15-parameter group of conformal, or Lorentz
angle-preserving transformations. We consider here what happens in the case
of a conformal transformation 4 between two finite-dimensional oriented
' pseudoriemannian manifolds M and N of arbitrary dimension and signature.

The Yang-Mills equations give a nonlinear condition y(4) = 0 on a Lie
algebra-valued one-form over M or N. Quasi-invariance relations give for-
mulas for y(h*A4), and thus measure the obstruction to A*A satisfying the
equations. This obstruction vanishes when dim M = 4 or when % actually
multiplies the metric tensor by a constant. Similar results hold for quasi-
invariance of the linearized equations under conformal transformations and
under Lie derivation with respect to conformal vector fields.

2. The Yang-Mills equations
Let M be a smooth (C *) oriented pseudoriemannian manifold, with metric
tensor g of signature (k, ¢), k + ¢ = m = dim M. The inner product g, on
tangent spaces M, given by g induces a nondegenerate inner product on
cotangent spaces M} upon identification of M, with M} through g,. This in
turn induces a nondegenerate inner product (also called g,) on the exterior
products A?(M}), which may be characterized by

2.1) gl A- s AP P A AT = det(g, (o, 7)), o0 € M.
We extend g to the exterior algebra A(M}) by requiring that the inner
product of forms of different order vanish.
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The orientation of M provides us with a distinguished connected compo-
nent of the punctured line A™(M}) — 0, and thus an E, € A™(M}) with
g(E,, E,) = (-1)?. The Hodge operator is the unique linear operator * on
A(M?) carrying AP(MYF) — A™ 7P(MY¥) and satisfying
(22) ~ +E, =(-1),

(2’3) gx(a” n)Ex =% (w /\ * 7])-

The right-hand side of each equation may be viewed as a real number
because A’(M?*) = R canonically. We also denote by * the induced operator
on section spaces of A(7*(M)); in particular on smooth differential forms.

Both the Hodge * and the exterior derivative d are “unchanged” in their
action on forms which take their “values™ in a real vector space V; that is, on

sections of ¥ @y A(T*(M)). Any choice of a basis v}, - - - , v, for V allows
us to write

*(v,® /) = v, ® + &’ (summation convention),
d(v, ® ') = v, ® do’, ' € A(M}),

and these formulas are basis-independent.
If V is actually a Lie algebra g, we may generalize the wedge product of
R-valued forms to the bracket of g-valued forms. In the notation above,

2.9 [q@w’, 0 ®n"] =[v, vk]wj/\"n".
This product satisfies the Z,-graded anticommutativity law and Jacobi iden-
tity:
(2.5) [E, Q] = (-1Y*"'[%, =],
17 [= [ ¥]] + (-DZ[Q, [¥ E]] + (D[ ¥ [EQ]] =0,
EEgRA(M}), QEg®AYMY), ¥ EgRA(M)

‘We may also wedge a real-valued form with a g-valued form, this operation
being characterized by the formula :
WA (5 ® %) =1,®(AW); w7 €A(M)),
and satisfying '
(2.6) dwAQ) =do A2+ (1w A dLQ,
where w is a smooth R-valued p-form, and  is a smooth g-valued form.
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The Yang-Mills equations may be stated as follows. If 4 is a g-valued
one-form on M, the covariant derivative of a g-valued p-form £ with respect
toAis

dQ =d—¢[4,2],

where e, is a nonzero coupling constant depending on p. Choosing e, = 2¢,
results in the Bianchi identity d,d,A = 0. Here we assume only e, = 2e¢, = ¢,
and definee,,_, =e.

The Yang-Mills equations are
F=d,4, d,»F=0.

The oneform A4 is called the connection (in geometry) or potential (in
physics); F is called the curvature form or field strengths.

3. Conformal transformations and vector fields

The following definitions and lemmas are contained in [3].

Definition 3.1. (a) Let M and N be pseudoriemannian manifolds of
signature (k, g) equipped with pseudometrics g,, and g, respectively. A
diffeomorphism A: M — N-is a conformal transformation if h*g, = yg,, for
some positive y € C*(M, R), where hA* is the pullback of covariant tensors
under h. A conformal transformation on M is a conformal transformation
M- M. .

(b) A smooth vector field X on M is conformal if 8(X)g,, = pgy, for some
p € C®(M, R). Here 8(X), the Lie derivative, is the unique type-preserving
derivation on the mixed tensor algebra S)(M) which extends f+> Xf on
functions and Y+ [X, Y] on vector fields, and which commutes with con-
tractions [2). :

(c) A conformal vector field X is locally integrable to a local one-parameter
group of conformal transformations if for each x € M there are an open set U,
containing x and a local one-parameter group A, of conformal transforma-
tions “on U,” (between open subsets of U,, the domain set always containing
x) with generator X in the sense that X, is tangent to 7> h(x) at ¢z = 0.

Remark 3.2. (a) The set of conformal transformations on M forms a
group under composition. _

(b) Let h be a conformal transformation M — N. Since 4 is a diffeomor-
phism, h*(gy)sy is necessarily nondegenerate on M,; furthermore, it has
signature (k, g), the same as (gy)y,) Thus the hypothesis y > 0 is superﬂu-
ous unless miseven and k = g = m/2.
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(¢) In the situation of part (c) of Definition 3.1, the action of §(X) on
covariant tensors (real or vector-valued) is given by

d
3.1 X)), = Eht*ﬂh,(x) 1m0’
If h*g = v,g, application of (3.1) with & = g yields 8(X)g = pg, where
d
(3.2 p(x) = E{Yl(x)l 0

(d) In most applications, the manifolds M and N are open subsets of such
manifolds as Minkowski space or its conformal compactification [5].

The properties which are crucial to the quasi-invariance relations for the
Yang-Mills equations describe the behavior of the Hodge * relative to
conformal transformations and vector fields. We let %),(M, g) denote the
space of smooth g-valued p-forms on M.

Lemma 3.3. (a) If h is a conformal transformation M — N, h*(gy) = Y8um»
then

(3.3) *h*Q = 2y TP 2B+ Q), Q€ DN, g),

the plus sign taken if h is orientation-preserving (A*Ey = 6Ey, § €
C>(M, R) with 8§ > 0), and the minus if h is orientation-reversing (8§ < 0).

(b) If X is a conformal vector field on M, (X)gy, = pgay> Which is locally
integrable to a local one-parameter group of conformal transformations, then

(3.4 *0(X)Q = 0(X) xQ —1(m — 2p)p +Q, Q€ D, (M, g).
Proof. (a) It is clearly enough to prove (3.3) with a real-valued p-form w in
place of €.

If ¢ is a real-valued one-form on N, the identification of tangent and
cotangent spaces given by g,, identifies h*¢ with y(dh‘l)Xq,, where X is
identified with ¢ through g,,. Thus

gu(h*o, h*y) = vgp((dh )X, (dh™)X,)

= y(h*gy)((dn M X,, (dh™)X,)
= 'YgN(Xq:’ X¢) °h

= vgn(9. ¥) o A,
where @, ¢ € 9, (N, R). Now if w, 7 € %),(N, R), then (2.1) gives
(3.5 gm(h*w, h*n) = 'ngN(“” ) ° h.

In particular,
gu(h*Ey, h*Ey) = y™(-1)%,
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so that h*E,, = = y™/ 2E,,. Thus taking h* of both sides of (2.3) in the form
gn(w, ) Ey = K N\ *6
yields
+y D2k A wh*o

=[v7gp(h*w, h*n) [(£ Y™/ Ey,)

= h*n A h*(»w).
Because an (m — p)-form on M is determined by its wedge products with
elements of GDP (M, R) and thus by its wedge with the A*n, (3.3) follows.

(b) Let h, be the local one-parameter group of conformal transformations
generated by X, so that A*g, = v,y Since hg is the identity, continuity
implies that all 4, preserve orientation. If & € %9,(M, q), then (3.1), (3.2), and
(3.3) give

., ,
(0(X)* D = — i (+ Do

t=0
d m-2)/2 |
B E(v,(x)( P2 u by szh,(x))|,=o
d S U d
-t (Eht*ﬂh,("_) =0 T E(m B 2p)(gt-7’(x)|"°)9")

= ((B(X)Q)x + %(m - 2p)P(x)9x)s

which is equivalent to (3.4).
We note finally that the relations

h*(w A\ M) = h*o N\ h*y,
(X )0 A =0 AO(X)n + (X))o A
for real-valued differential forms imply the relations
h*[Z, Q] =[h*E, h*Q],
0(X)[Z Q] =[= 0(X)Q] +[8(X)E, Q]

for g-valued forms.

(3.6)

4. Quasi-invariance of the Yang-Mills equations
For a nonlinear differential equation, three types of quasi-invariance rela-
tions are relevant:
(1) quasi-invariance of the equations under conformal transformations;
(2) quasi-invariance of the liriearized equations under conformal transfor-
mations;



200 THOMAS P. BRANSON

(3) quasi-invariance of the linearized equations under Lie derivation with
respect to conformal vector fields.

We set y(4) = d, * d;A for A € D,(M, g); that is, y is the nonlinear
function on 9, (M, g) whose zeros are solutions of the Yang-Mills equations.
As for the linearized equations, we make the following definition.

Definition 4.1. Let ¥ and W be real vector spaces, and let

M:VX-- XV W

J times
be a j-linear function for 0 < j < N. The linearization of the equation
. o
j§0 ]\lj(v,' --,0)=0
atv € Vis the equation

2 é Alj(v,'-',z}’,---,v) =0
j=0]i=1
i-th place
as a condition on X € V.
Thus the linearization of the Yang-Mills system
F=dA=dA —-;[A,A],
0=dA*F=d*F—e[A,tF],
at 4 € 9,(M, g) is
f=da~¢[4,a] (by(25)),
O=ds+f—e[a,+F| —e[A, +f]
=d,+f—e[a,+F], F=4d,A,
as a condition on a € 9,(M, g). We define the linear function Y,: %,(M, g)
— D, _1(M, g) by
Ya=d, *»f—e[a, +F|,
f=da—e[A,a], F=dA.
Theorem 4.2, Let A € D(M, g)and F = d A.
(@) If his a conformal transformation M — N, h*g, = yg8,,, then
(4.1)  y(h*4) = = (Y™ 2hrp(4) — (m — 4y@ ™ 2dy A h*(x F)),
Yieah*a = = (Y4~ ™/2p* ¥,a — 2(m — 4y@=" 2@y A\ h*(> f)),
(4.2) f=da— e’[A, a].
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As usual, we take the plus sign if h preserve& orientation, and the minus sign if h
reverses orientation,

(b) If X is a conformal vector field on M, 0(X)gn = pgys> Which is locally
“integrable to a local one-parameter group of conformal transformations which fix
‘A, then '

Y,8(X)a = 0(X)Y,a —3(m — 9){d,(p + f) — ep[a, + F]},
f=da—-¢[4,a] ‘
Proof. (a) We calculate

(4.3)

y(h*A) = dyu, + F',

F' =d,. h*4 = dh*A4 — %[h*A, h*A] = h*F.

By (3.3),

dyoa(£ 74~/ H1¥ (s F))

= = (d(y4™2h*(s F)) — ey*=™/2[h*4, h*(» F)])

= = (Y4 "/%h*d, « F —1(m — 9)y@~™/2dy A\ h*(+ F))
= = (Y4 2h*y(4) — 3(m — 97" 2dy A B*(s F)).

y(h*4)

To prove (4.2), set f = da — €’[ A4, a}, and calculate
Yo h*a = dyuy + f' — €[ h*a, x h*F],
f = dh*a — €[h*A, h*a] = h*f.
By (3.3),
Yj h*ta = * (dh‘A(Y(4_M)/2h*(* f )) — ey(4_'")/2h*[a, * F])
= = (YO hrd, x f = 3(m — Dy~ 2y AR )
— ey®~™/2h*[a, x F))

= = (Y42 Y0 —m — 40~ 2dy N B+ ).

(b) Let h, be the one-parameter group generated by X, so that hfg,, =
Y,8x- Since the h, fix A4, (3.1) implies that 8(X)4 = 0, and the field strength
perturbation f” associated to 8(X)a is

f' = dd(X)a — €[4, 6(X)a] = 6(X)f
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by (3.6) and the fact that d commutes with 8(X). Thus
Y, 0(X)a ='d, + 0(X)f — e[ 6(X)a, * F]
= d,(0(X) + f—3(m — 4)p + f) — e[ 0(X)a, * F)
= do(X) *f — e[ A, 0(X) * f] —3(m — Dd(p * f)
—e[8(X)a, * F]
= 0(X)d, » f —5(m — 4)d,(p * f) — e[6(X)a, + F]
= 0(X)d, * f +3(m — )d,(p + f) — eb(X)[a, + F|
+e[a,0(X) = F].
Now 8(X) * F = = 8(X)F + 1(m — 4)p = F, which simplifies to 3(m — 4)p

* F as 0(X)F = (X)(dA — %e’[A, A) = di(X)A — €[4, (X)A] = 0. This
makes the above

6(X)Y,a —3(m — 9){dy(p /) — eoa, * F]}.

Remark 4.3. (a) The Theorem points up the importance of dimension 4 in
the Yang Mills theory as m = 4 reduces (4.1)-(4.3) to

(44 y(h*4) = k*y(4),
4.5) Y, h*a = h*Y a,
(4.6) Y,0(X)a = 8(X)7,a.

The signature (k, g) of the pseudometric is irrelevant to these formulas; in
particular, it may be (4, 0) as in the case of Euclidean Yang-Mills (studied by
Atiyah, Singer, et al), or (3, 1) as in the case of the equations in their original
physical (hyperbolic) form, as studied by Segal. -

(b) In any dimension, the Yang-Mills equations and their linearizations
are invariant under uniform dilations (h*gy = ag,, a > 0 constant), and in
particular, under isometries (a = 1), since for such h, &y =0 in (4.1) and
(4.2). For isometries, we again have (4.4) and (4.5). If a conformal vector field
X integrates to a local one-parameter group of uniform dilations, the p in
0(X)gy = pgyy is constant by (3.1), so that (4.3) becomes

Y,8(X)a = {8(X) ~3(m — Hp} Y ,a,

and we have invariance. If X integrates to a local one-parameter group of
isometries, #(X)g,, = 0 and we again have (4.6).

(c) For (42) and (4.3), it was not necessary to assume that the “back-
ground” potential 4 satisfy the Yang-Mills equations.
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